

Fishery Data Series No. 23-25

Red Lake Remote Video Salmon Escapement Monitoring Project, 2022

by

Timothy J. Blackmon

and

Edward O. Otis

September 2023

Alaska Department of Fish and Game

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative	AAC	<i>all standard mathematical signs, symbols and abbreviations</i>	
deciliter	dL	Code		alternate hypothesis	H _A
gram	g	all commonly accepted abbreviations	e.g., Mr., Mrs., AM, PM, etc.	base of natural logarithm	e
hectare	ha			catch per unit effort	CPUE
kilogram	kg			coefficient of variation	CV
kilometer	km	all commonly accepted professional titles	e.g., Dr., Ph.D., R.N., etc.	common test statistics	(F, t, χ^2 , etc.)
liter	L			confidence interval	CI
meter	m	at	@	correlation coefficient	R
milliliter	mL	compass directions:		(multiple)	
millimeter	mm	east	E	correlation coefficient	
		north	N	(simple)	r
		south	S	covariance	cov
		west	W	degree (angular)	°
		copyright	©	degrees of freedom	df
		corporate suffixes:		expected value	E
		Company	Co.	greater than	>
		Corporation	Corp.	greater than or equal to	≥
		Incorporated	Inc.	harvest per unit effort	HPUE
		Limited	Ltd.	less than	<
		District of Columbia	D.C.	less than or equal to	≤
		et alii (and others)	et al.	logarithm (natural)	ln
		et cetera (and so forth)	etc.	logarithm (base 10)	log
		exempli gratia	e.g.	logarithm (specify base)	log ₂ , etc.
		(for example)		minute (angular)	'
		Federal Information		not significant	NS
		Code	FIC	null hypothesis	H ₀
		id est (that is)	i.e.	percent	%
		latitude or longitude	lat or long	probability	P
		monetary symbols		probability of a type I error	
		(U.S.)	\$, ¢	(rejection of the null hypothesis when true)	α
		months (tables and figures): first three letters	Jan., ..., Dec.	probability of a type II error	
				(acceptance of the null hypothesis when false)	β
		registered trademark	®	second (angular)	"
		trademark	™	standard deviation	SD
		United States		standard error	SE
		(adjective)	U.S.	variance	
		United States of	USA	population	Var
		(America (noun))	United States Code	sample	var
		U.S.C.			
		U.S. state	use two-letter abbreviations (e.g., AK, WA)		
volts	V				
watts	W				

FISHERY DATA REPORT NO. 23-25

RED LAKE REMOTE VIDEO SALMON ESCAPEMENT MONITORING PROJECT, 2022

by

Timothy J. Blackmon and Edward O. Otis
Alaska Department of Fish and Game, Division of Commercial Fisheries, Homer

Alaska Department of Fish and Game
Division of Sport Fish, Research and Technical Services
333 Raspberry Road, Anchorage, Alaska, 99518-1565

September 2023

This project was funded through a reciprocal services agreement (RSA) between the Alaska Energy Authority (AEA) and the Alaska Department of Fish and Game (ADF&G).

ADF&G Fishery Data Series was established in 1987 for the publication of Division of Sport Fish technically oriented results for a single project or group of closely related projects, and in 2004 became a joint divisional series with the Division of Commercial Fisheries. Fishery Data Series reports are intended for fishery and other technical professionals and are available through the Alaska State Library and on the Internet: <http://www.adfg.alaska.gov/sf/publications/>. This publication has undergone editorial and peer review.

Product names used in this publication are included for completeness and do not constitute product endorsement. The Alaska Department of Fish and Game does not endorse or recommend any specific company or their products.

*Timothy J. Blackmon and Edward O. Otis
Alaska Department of Fish and Game, Division of Commercial Fisheries,
3298 Douglas Place, Homer, AK 99603, USA*

This document should be cited as follows:

Blackmon, T. J., and E. O. Otis. 2023. Red Lake remote video salmon escapement monitoring project, 2022. Alaska Department of Fish and Game, Fishery Data Series No. 23-25, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:

ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers:

(VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648,

(Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact:

ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2517

TABLE OF CONTENTS

	Page
LIST OF TABLES.....	i
LIST OF FIGURES	i
ABSTRACT	1
INTRODUCTION	1
OBJECTIVES.....	3
METHODS.....	3
Study Site.....	3
Video Components	3
Video Installation, Operation, and Removal.....	4
Video Recording.....	4
Video Review	5
RESULTS.....	5
Adult Salmonid Enumeration	5
Juvenile Salmon.....	5
Other Wildlife Documented	6
DISCUSSION.....	6
Adult Salmon Enumeration	6
Juvenile Salmon.....	7
ACKNOWLEDGEMENTS.....	7
REFERENCES CITED	7
TABLES AND FIGURES.....	11

LIST OF TABLES

Table	Page
1. Daily fish passage at Red Lake autonomous video counting tower by species.....	12

LIST OF FIGURES

Figure	Page
1. Map of the Southern District of Lower Cook Inlet showing location of Martin River and Red Lake.	15
2. Photograph illustrating the location of the Red Lake remote video salmon escapement project.	16
3. Photographs of autonomous video counting tower system at Red Lake showing the tower, camera, and aluminum strongbox; and the solar panels and high contrast substrate panel across the stream bottom to enhance the contrast of fish swimming past the camera.....	17
4. Picture illustrating the inside of the aluminum strongbox housing various electronic components and two Group 29 12 V batteries that were connected in parallel to make a single 200-amp hour battery bank outputting 12 VDC.	18
5. Screen grab image of adult sockeye salmon migrating upstream, as documented by the autonomous video counting tower system at Red Lake.....	19
6. Chart of daily and cumulative sockeye salmon escapement to Red Lake, 2022.	20
7. Chart of daily and cumulative coho salmon escapement to Red Lake.	21

ABSTRACT

From June 8 through October 13, 2022, Alaska Department of Fish and Game staff operated an autonomous video counting tower (AVCT) immediately below the outlet of Red Lake within the Southern District of the Lower Cook Inlet Management Area (LCIMA). The AVCT was programmed to record high-resolution time-lapse video during daylight hours to provide information on the run-timing and magnitude of Pacific salmon (*Oncorhynchus* spp.) escapements into Red Lake. This project was a component of the Alaska Energy Authority's preliminary assessment of fishery resources in the Martin River drainage, which is under consideration for future hydroelectric power development. Sockeye salmon (*O. nerka*), coho salmon (*O. kisutch*), pink salmon (*O. gorbuscha*), and Dolly Varden (*Salvelinus malma*) were captured on video migrating upstream to Red Lake in 2022. Additionally, juvenile coho salmon were collected from the lake shoreline during a spring sampling trip. The AVCT operated without interruption and documented 681 sockeye salmon with the peak daily count occurring on June 21. Peak run timing for coho salmon occurred on October 10 with a total observed escapement of 48. The AVCT documented 5 pink salmon and 53 Dolly Varden, as well as a variety of wildlife.

Keywords Lower Cook Inlet, Kachemak Bay, Red Lake, Martin River, Pacific salmon, sockeye salmon, coho salmon, pink salmon, Dolly Varden, video, escapement, monitoring, video assessment, salmon escapement, autonomous video counting tower, AVCT

INTRODUCTION

This project was conducted by the Alaska Department of Fish and Game (ADF&G) as a component of the Alaska Energy Authority's (AEA) preliminary assessment of fishery resources in the Martin River drainage, which is under consideration for future hydroelectric power development. The project took place in ADF&G's Lower Cook Inlet Management Area (LCIMA), which includes marine and freshwaters of the Cook Inlet region south of the latitude of Anchor Point including the western shore of Cook Inlet south to Cape Douglas, and the eastern shore of Cook Inlet along the Kenai Peninsula to Cape Fairfield. This area is included in Area H and encompasses all coastal waters and inland drainages entering this area. This project was located within the Southern District of the LCIMA (Figure 1).

The use of aerial surveys to monitor salmon escapement on small clear streams in Alaska began in the 1930s (Eicher 1953) and continues today (Otis and Hollowell 2022). This technique is favored for remote and marginally productive stocks which otherwise may go unassessed due to the high cost of intensive monitoring methods (e.g., weir, sonar) relative to the stream's modest escapement. However, aerial surveys have several drawbacks. Observer experience, water clarity, stream morphology and habitat type, timing and periodicity of survey flights, and stream residency are just a few factors shown to influence the accuracy and precision of aerial survey estimates of salmon escapement (Bevan 1961; Neilson and Geen 1981; Cousens et al. 1982; Shardlow et al. 1987; Perrin and Irvine 1990; Hill 1997; Bue et al. 1998; Jones et al. 2007). Researchers have developed sophisticated statistical approaches for dealing with some of these problems (Hilborn et al. 1999; Adkison and Su 2001; Su et al. 2001), but aerial survey remains an imprecise escapement monitoring tool. At best, it provides consistent indices of in-river escapement among years. It does not provide accurate, reliable estimates of spawner-abundance, particularly when in-river exploitation or predation of salmon is high (Peirce et al. 2011; Peirce et al. 2013) and observer efficiency and stream residency are not precisely known (Perrin and Irvine 1990; Bue et al. 1998; Jones et al. 1998).

Accurate, reliable estimates of spawner abundance are required to assess stock-recruit relationships (Walters and Ludwig 1981), monitor long-term trends in the status of salmon resources (Baker et al. 1996), set appropriate spawning escapement goals for individual streams (Otis et al. 2016), and manage commercial fisheries in season (Hollowell et al. 2019). Because

aerial surveys cannot always provide this level of information and more accurate methods are prohibitively expensive for streams with marginal escapements, a niche exists that remote video technology has helped fill. Fishery biologists have long considered the potential for photographic enumeration to eliminate the biases inherent to human derived aerial, ground, and tower counts of salmon escapement. In the late 1940s and early 1950s, researchers experimented with aerial and tower-based photography to count sockeye salmon (*Oncorhynchus nerka*) in the Bristol Bay area (Kelez 1947; Eicher 1953; Mathisen 1962). While these early experiments showed promise, their feasibility was reduced by the state of technology of cameras and recording equipment from that era.

Considerable technological advancement has occurred since that time and recent video and time-lapse recording systems have proven effective in a wide variety of applications. Video has been used successfully to evaluate the use of underwater habitat features (Groves and Chandler 1999; Carlson and Quinn 2005), evaluate the accuracy of side-looking sonar to count outmigrating salmon fry (Mueller et al. 2006), estimate residency on spawning redds (Shardlow 2004), monitor fish wheel catch (Daum 2005), count and measure juvenile salmon in a controlled field situation (Irvine et al. 1991), track fish swimming movements (Hughes and Kelly 1996), and count fish at passageways (Haro and Kynard 1997; Davies et al. 2007). The use of time-lapse video at dam fish passageways along the Columbia River system (Hatch et al. 1994; Hiebert et al. 2000) has advanced to the point where researchers are developing image processing capabilities to increase the efficiency of reviewing video to count fish (Hatch et al. 1998; Shortis and Otis 2014).

Elsewhere in the Pacific Northwest, researchers have been developing underwater video systems associated with partial weirs (Kucera and Faurot 2005; Gates and Palmer 2008; Kerkvliet and Booz 2015). Underwater systems that do not require human operators are not practical for most Alaskan streams because the camera and weir would be vulnerable to high water events, inquisitive bears, and other mammals. To address this, researchers in Alaska have been experimenting with human operated video counting towers (Hetrick et al. 2004) and those that do not require human operators (Otis and Dickson 2002; O’Neal 2007; Otis 2012; Otis 2020). Towers are more practical for remote operation without people present (uncrewed) because there’s nothing in the creek to obstruct fish passage or become vulnerable to bears or high-water events. Unlike traditional counting towers, where human observers sample the escapement by counting fish during predefined periods every hour, video counting towers can be programmed to record fish passage continuously. Uncrewed or autonomous video counting towers (AVCT) are well suited for many small clear streams that are otherwise monitored by aerial survey. When deployed at appropriate locations, AVCTs have demonstrated the ability to collect near census quality escapement estimates (Otis et al. 2010) that far surpass the accuracy of aerial survey indices.

The outlet of Red Lake is well suited to monitoring salmon escapement with an AVCT. The outlet stream is narrow, very clear, has shallow laminar flow, and has adequate solar exposure. All these traits are needed for AVCTs to produce high quality video images of migrating salmon. Because salmon escapement was expected to be modest and access to Red Lake is difficult and expensive (i.e., helicopter), an AVCT was determined to be the most effective and economical method for assessing this stock.

OBJECTIVES

1. Operate an autonomous video counting tower (AVCT) at Red Lake to census the daily escapement of adult Pacific salmon during daylight hours from approximately June 8 through October 13.
2. Identify and document other fish and wildlife species (e.g., juvenile salmonids, bears, etc.) captured on video transiting the camera site.

METHODS

STUDY SITE

Red Lake is located approximately 8.8 river km (5.5 mi) upstream of the mouth of the Martin River near the head of Kachemak Bay, in the Southern District of the LCIMA (Figure 1). The Red Lake AVCT was located approximately 100 m below Red Lake along the outlet stream that flows into the Martin River (Figure 2; approximately 59.6966 N, 151.0031 W). This location was selected because it met key criteria for successful AVCT operations (e.g., shallow/clear water, laminar flow, narrow stream width, and adequate southern exposure for generating enough solar power to exceed system requirements).

Components for the video system were mounted to a 3 m (10 ft) section of antenna tower. Approximately 30–60 cm (1–2 ft) of the bottom of the tower were buried in the ground to create a solid base. The top of the tower was stabilized by 3 radially spaced guy lines extending downward to *Duckbill* earth anchors (Model-88). A 122 cm (4 ft) length of 6.4 cm diameter (2.5 in) aluminum pipe was secured to the top of the tower for additional height and to provide a place to attach an adjustable video camera housing (Figure 3).

A high-contrast substrate panel was fabricated out of a 4.6 mm ($\frac{3}{16}$ in) mesh beach seine. It was dyed light green because we have found fish are sometimes reluctant to swim across a white panel (E. Otis, *personal observation*). The panel was placed across the bottom of the stream, perpendicular to water flow, to better elucidate fish passing by the AVCT (Figure 3). The upstream edge of the panel was secured to an anchor chain and fastened to the stream bottom using a *Duckbill* earth anchor (Model DB-68). The downstream edge was left unencumbered as it was held tight to the stream bed by the current.

Currently, in addition to Red Lake, ADF&G uses AVCTs to monitor escapements for 2 wild salmon stocks in the LCIMA: Mikfik Lake sockeye salmon and Chenik Lake sockeye salmon (Otis 2020). The AVCT at Red Lake was modeled after the design and functionality of those systems.

VIDEO COMPONENTS

The AVCT system was composed of several “off-the-shelf” electronic and video components:

- surveillance camera (*GeoVision Model GV-BX3400*)
- 2 TB hard drive (*Oyen Novus 7200RPM*)
- (4) 85 W solar panels (*Model BP585U*)
- (2) 15 A solar power regulators (*Model AST-15A*)
- (2) 12 V batteries (*Absorbed Glass Mat [AGM], Group 29*)
- 12 V timer switch (*Model JVR 12V*)
- 12 Circuit fuse block (*Blue Sea Systems*)
- Other assorted wires and electrical components

The camera was enclosed in a custom-fabricated, aluminum, weatherproof camera housing attached to the top of the tower where it was adjusted so the view encompassed the entire wetted width of the creek. The other sensitive electronic components were protected inside a commercially available weatherproof aluminum strongbox (Model *UWS-ATV*: 81.3 cm L x 30.5 cm W x 30.5 cm H) set atop a platform secured to the tower approximately 1 m above ground (Figure 3). A 2.5 cm diameter (1 in) flexible conduit protected all cables needed for communication between the camera and strongbox components. Communication cables included: ethernet, 12/2 power, USB, and coaxial. Video from the camera was recorded to a 2 TB external hard drive via a 4.6 m (15 ft) length of USB cable (USB-C to 2.0 mini-B).

The camera (*GeoVision* Model *GV-BX3400*) was a 3 mega-pixel (MP) progressive scan CMOS IP box camera. It was outfitted with a vari-focal (*GeoVision* 3–10.5 mm), auto-iris lens. To balance hard drive capacity with image quality, video was recorded at 3 frames per second (fps) in the MJPEG codec, which compresses video within frames. Other video codecs that compress video across frames, such as H.264, can result in rapid image degradation when recording through a medium of moving water, especially when surface turbulence is present. The camera was powered by a dedicated 12 VDC cable, but it also had power over ethernet (PoE) capability. Setup and review of the camera required a laptop computer running *GeoVision* software (Model *GV-IPCAM H.264*) that was connected to the camera via an ethernet cable. In the field, during setup and periodic maintenance visits, we confirmed the camera was functioning properly using the laptop or a portable monitor connected via coax cable.

Electronic components in this system were powered by two Group 29 12-volt direct current (VDC), 100 ampere hour (Ah) AGM batteries. They were connected in parallel to provide a single 200 Ah capacity battery bank outputting 12 VDC. Four 85W solar panels (e.g., Model *BP585U*), set up as 2 isolated pairs, were used to recharge the battery bank. Wire leads from each pair of solar panels were run through a 15 A fuse block and a 15 A solar power regulator (Model *AST 15*) before going to the battery bank (Figure 4). All sensitive electronic components (e.g., camera, hard drive, monitor) were protected by appropriately sized fuses inside a fuse block, like those used for small boat accessories.

VIDEO INSTALLATION, OPERATION, AND REMOVAL

Given the expense of accessing the site by helicopter, we programmed the camera to maximize storage capacity (up to ~50 days), and coordinated with other researchers to share flights to service our respective field equipment. Hard drives were exchanged on June 15, August 4, and September 22, with final retrieval on October 13.

For more details on the installation, operation, and maintenance of the AVCT, including programming the camera and reviewing video using *GeoVision* software, see Otis and Blackmon (2022) and Appendices A–E in Otis (2020).

VIDEO RECORDING

Time-lapse recording rate was set at 3 fps to optimize hard drive space without compromising the reviewer's ability to track individual fish transiting the video site. Although the camera is capable of recording in the H.264 video compression format, we used the MJPEG format because it yields better quality images and smoother playback for our application. We did not use auxiliary lighting due to power limitations; therefore, there were approximately 4 h each night (00:00–04:00) where it was too dark for the AVCT to see fish in June/July and 6–8 h in August/September. Although

disk space required for a day's video varies with the complexity of the images (e.g., varying light conditions, surface turbulence, cloud shadows, etc.), the 2 TB hard drives we used with the camera typically accommodated about 50 days of recorded video, given our programmed settings. Hard drives larger than 2 TB are not compatible with *GeoVision* cameras.

VIDEO REVIEW

Video was reviewed during and after the season to enumerate fish passage (Figure 5). Review of video was easiest when run through the same *GeoVision* camera that was used to record the images, but that was not possible when the camera was still in the field recording fish passage. To overcome this, we installed software (*Ext2Fsd* and *RemoteViewlog*) on select office computers that allowed us to review video files directly from *Linux* formatted external hard drives. *Ext2Fsd* is a free file system driver, written in *C* for *Microsoft* operating systems, that facilitates read/write access to *Linux* formatted drives and files (e.g., ext2, ext3, ext4). *RemoteViewlog* is *GeoVision*'s video review software, which provides the reviewer control over a variety of playback features (e.g., screen size, playback speed, brightness, contrast, etc.). For more details on the use of *GeoVision* software for video review, see Appendices D and E in Otis (2020).

Fish counts and other noteworthy observations (e.g., weather, dawn/dusk, video quality; and sightings of bears, moose, or other wildlife captured on video) were recorded in uniform *Microsoft Excel* spreadsheets. Daily fish counts were stratified by species into 6-hour time blocks (e.g., 00:01–06:00, 06:01–12:00, 12:01–18:00, and 18:01–24:00). Staff also recorded periods of video loss or other technical difficulties. See Appendix D in Otis (2020) for further details and an example of this spreadsheet.

RESULTS

ADULT SALMONID ENUMERATION

The AVCT was operated 20 h per day (04:00–24:00) from 12:15 on June 8 until 12:00 on October 13, 2022, resulting in 2,539.5 h of recorded video. Sockeye salmon, coho salmon (*O. kisutch*), pink salmon (*O. gorbuscha*), and Dolly Varden (*Salvelinus malma*) were observed migrating to Red Lake during 2022 operations. The AVCT operated without interruption and documented a total of 681 sockeye salmon with the peak daily count occurring on June 21 (Table 1, Figure 6). Peak run timing for coho salmon occurred on October 10 with a total observed escapement of 48 (Table 1, Figure 7). The AVCT documented 5 pink salmon and 53 Dolly Varden char (Table 1). The Dolly Varden count was probably underestimated due to the diminutive size and coloration of the fish, which makes them difficult to see when viewed from above.

JUVENILE SALMON

During a brief opportunistic sampling event on June 8, several juvenile salmon observed along the shoreline of Red Lake were caught using a make-shift beach seine. Specimens were collected and transported to our lab in Homer where they were all positively identified as coho salmon.

OTHER WILDLIFE DOCUMENTED

• American dipper	<i>Cinclus mexicanus</i>
• Bald eagle	<i>Haliaeetus leucocephalus</i>
• Beaver	<i>Castor canadensis</i>
• Black bear	<i>Ursus americanus</i>
• Brown bear	<i>Ursus arctos</i>
• Common merganser	<i>Mergus merganser</i>
• Coyote	<i>Canis latrans</i>
• River otter	<i>Lontra canadensis</i>
• Harlequin duck	<i>Histrionicus histrionicus</i>
• Belted kingfisher	<i>Megaceryle alcyon</i>
• Red squirrel	<i>Tamiasciurus hudsonicus</i>
• Spotted sandpiper	<i>Actitis macularius</i>
• Unidentified hawk	<i>Accipiter</i> sp.

DISCUSSION

ADULT SALMON ENUMERATION

The AVCT performed flawlessly in 2022, enabling accurate assessment of the run timing and magnitude of Pacific salmon returning to Red Lake during daylight hours. No system failures occurred during the 2022 season, and the only downtime was attributed to brief shutdowns to swap hard drives. AVCTs have many advantages over periodic aerial and ground survey counts, some of which are discussed in Otis (2012). The potential limitations of AVCTs include operational integrity of the system and the inability to monitor all 24 hours in a day without adding auxiliary lighting. Hence, there is the potential to underestimate the size of the total run when only counting during daylight hours. On the Anchor River, diurnal timing of local Chinook (*O. tshawytscha*) and coho salmon runs has been monitored for many years. During some years, 30% of the escapement has occurred after 1900 h (Kerkvliet and Booz 2010). Because an exact census of every fish was not a requirement for this pilot study, we did not design the system to accommodate the additional power generation that would have been required for auxiliary lighting. However, it should be noted that approximately 75% of the coho salmon that migrated through a video weir operated by ADF&G on nearby Battle Creek in 2022 did so during hours of darkness (Holly Dickson, ADF&G, Division of Sport Fish, Fishery Biologist, Homer, October 2022, personal communication). Although there is limited coho salmon spawning habitat available above the Red Lake AVCT, it is possible that the coho salmon documented during daylight hours only represented a fraction of the total run. When considering the run timing for Red Lake sockeye and coho salmon and evaluating potential impacts that may derive from future hydroelectric development activities in the drainage, it should be noted that there is an unknown migratory lag time between the date salmon enter the Martin River from Kachemak Bay and the date they are observed at the Red Lake AVCT. An extended study duration (i.e., earlier installation/later removal) may be warranted if this project is continued to ensure the entire sockeye and coho salmon runs are documented. Consideration may also be warranted for adding auxiliary lighting and power generation to the Red Lake AVCT to enable nocturnal video monitoring to better estimate the total run size for all species.

JUVENILE SALMON

Sampling juvenile salmonids was not an objective of this study, but we took advantage of an opportunity to sample fry observed along the shoreline of Red Lake during our Spring 2022 visit to the site. However, that was a cursory effort and the juvenile coho salmon we caught should not be considered representative of all species that may be present. For example, given the number of adult sockeye salmon counted past the AVCT, it would appear Red Lake also provides appropriate rearing habitat for juvenile sockeye salmon. Future survey efforts could determine if juvenile sockeye salmon rear in Red Lake for 1 or 2 years or if they leave the system soon after emerging from the gravel, because they sometimes do in systems lacking sufficient lake resources (Kaeriyama and Ueda 1998). A more thorough and systematic survey involving sampling of different habitats throughout the lake using a variety of capture methods should be used if this becomes a future study objective.

ACKNOWLEDGEMENTS

AEA provided funding for this project through a Reciprocal Services Agreement with ADF&G. The authors would like to acknowledge the collaborators and employees that helped to make this project possible. Scheduling and logistics were often facilitated by Bryan Carey at AEA and Euan-Angus MacLeod at Dickinson Oswald Walch Lee (DOWL). Maritime helicopters made safely accessing this remote site relatively easy and efficient. ADF&G technicians were extremely productive and thorough in reviewing over 2,500 h of video recorded during this season.

REFERENCES CITED

Adkison, M. D., and Z. Su 2001. A comparison of salmon escapement estimates using a hierarchical Bayesian approach versus separate maximum likelihood estimation of each year's return. *Canadian Journal of Fisheries and Aquatic Sciences* 58:1663–1671.

Baker, T. T., A. C. Wertheimer, R. D. Burkett, R. Dunlop, D. M. Eggers, E. I. Fritts, A. J. Gharret, R. A. Holmes, and R. L. Wilmot. 1996. Status of Pacific salmon and steelhead escapements in Southeastern Alaska. *Fisheries* 21(10):6–18.

Bevan, D. E. 1961. Variability in aerial counts of spawning salmon. *Journal of the Fisheries Research Board of Canada* 18:337–348.

Bue, B. G., S. M. Fried, S. Sharr, D. G. Sharp, J. A. Wilcock, and H. J. Geiger. 1998. Estimating salmon escapement using area-under-the-curve, aerial observer efficiency, and stream-life estimates: the Prince William Sound pink salmon example. *North Pacific Anadromous Fish Commission Bulletin* 1:240–250.

Carlson, L. D., and M. S. Quinn. 2005. Evaluating the effectiveness of instream habitat structures for overwintering stream salmonids: A test of underwater video. *North American Journal of Fisheries Management* 25:130–137.

Cousens, N. B. F., G. A. Thomas, S. G. Swann, and M. C. Healy. 1982. A review of salmon escapement estimation techniques. *Canadian Technical Report of Fisheries and Aquatic Sciences* No. 1108.

Daum, D. W. 2005. Monitoring fish wheel catch using event-triggered video technology. *North American Journal of Fisheries Management* 25:322–328.

Davies, T. D., D. G. Kehler, and K. R. Meade. 2007. Retrospective sampling strategies using video recordings to estimate fish passage at fishways. *North American Journal of Fisheries Management* 27:992–1003.

Eicher, G. J. 1953. Aerial methods of assessing red salmon populations in western Alaska. *Journal of Wildlife Management* 17:521–527.

REFERENCES CITED (Continued)

Gates, K. S., and D. E. Palmer. 2008. Abundance and run timing of adult steelhead trout in Crooked and Nikolai Creeks, Kenai Peninsula, Alaska, 2007. U.S. Fish and Wildlife Service, Alaska Fisheries Data Series Report No. 2008-02.

Groves, P. A., and J. A. Chandler. 1999. Spawning habitat used by fall Chinook salmon in the Snake River. North American Journal of Fisheries Management 19:912–922.

Haro, A., and B. Kynard. 1997. Video evaluation of passage efficiency of American shad and sea lamprey in a modified ice harbor fishway. North American Journal of Fisheries Management 17:981–987.

Hatch, D. R., M. Schwartzberg, and P. R. Mundy. 1994. Estimation of pacific salmon escapement with a time-lapse video recording technique. North American Journal of Fisheries Management 4:626–635.

Hatch, D. R., J. K. Fryer, M. Schwartzberg, D. R. Pederson, and A. Wand. 1998. A computerized editing system for video monitoring of fish passage. North American Journal of Fisheries Management 18:694–699.

Hetrick, N. J., K. M. Simms, M. P. Plumb, and J. P. Larson. 2004. Feasibility of using video technology to estimate salmon escapement in the Ongivinuk River, a clear-water tributary of the Togiak River. U. S. Fish and Wildlife Service, King Salmon Fish and Wildlife Field Office, Alaska Fisheries Technical Report No. 72, King Salmon, AK.

Hiebert, S., L. A. Helfrich, D. L. Weigmann, and C. Liston. 2000. Anadromous salmonid passage and video image quality under infrared and visible light at Prosser Dam, Yakima River, Washington. North American Journal of Fisheries Management 20:827–832.

Hilborn, R., B. G. Bue, and S. Sharr. 1999. Estimating spawning escapement from periodic counts: a comparison of methods. Canadian Journal of Fisheries and Aquatic Sciences 56:888–896.

Hill, R. A. 1997. Optimizing aerial count frequency for the area-under-the-curve method of estimating escapement. North American Journal of Fisheries Management 17:461–466.

Hollowell, G., E. O. Otis, and E. Ford. 2019. 2018 Lower Cook Inlet area finfish management report. Alaska Department of Fish and Game, Fishery Management Report No. 19-23, Anchorage.

Hughes, N. F., and L. H. Kelly. 1996. New techniques for 3-D video tracking of fish swimming movements in still or flowing water. Canadian Journal of Fisheries and Aquatic Science 53:2473–2483.

Irvine, J. R., B. R. Ward, P. A. Teti, N. B. F. Cousens. 1991. Evaluation of a method to count and measure live salmonids in the field with a video camera and computer. North American Journal of Fisheries Management 11:20–26.

Jones III, E. L., T. J. Quinn, and B. W. Van Aken. 1998. Observer accuracy and precision in aerial and foot survey counts of pink salmon in a Southeastern Alaska stream. North American Journal of Fisheries Management 18:832–846.

Jones III, E. L., S. Heinl, and K. Pahlke. 2007. Aerial counts. Pages 399–410 [In] D. H. Johnson, B. M. Shrier, J. S. O’Neil, J. A. Knutzen, X. Augerot, T. A. O’Neil, and T. N. Pearson, editors. Salmonid field protocols handbook: Techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, MD.

Kaeriyama, M., and H. Ueda. 1998. Life history strategy and migration pattern of juvenile sockeye (*Oncorhynchus nerka*) and chum salmon (*O. keta*) in Japan: a review. North Pacific Anadromous Fish Commission Bulletin No. 1:163–171.

Kelez, G. B. 1947. Measurement of salmon spawning by means of aerial photography. Pacific Fisherman 45:46–51.

Kerkvliet, C.M., and M. D. Booz. 2010. Anchor River Chinook and Coho Salmon Escapement, 2009. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 12-07.

Kerkvliet, C. M., and M. D. Booz. 2015. Operational plan: Anchor River Chinook salmon stock assessment, 2015. Alaska Department of Fish and Game, Division of Sport Fish, Regional Operational Plan No. ROP.SF.2A.2015.16, Anchorage.

REFERENCES CITED (Continued)

Kucera, P. A., and D. Faurot. 2005. Chinook salmon (*Oncorhynchus tshawytscha*) adult abundance monitoring in Lake Creek and Secesh River, Idaho, 2004. Annual report prepared by Nez Perce Tribe, Department of Fisheries Resources Management for U.S. Department of Energy, Bonneville Power Association, Project No. 199703000, Contract No. 04600.

Mathisen, O. A. 1962. Photographic enumeration of red salmon escapement. Pages 349–372 [In] T. S. Y Koo, editor. Studies of Alaska red salmon. University of Washington Publications in Fisheries New Series, Volume I. University of Washington Press, Seattle, WA.

Mueller, A. M., D. J. Degan, R. Kieser, and T. Mulligan. 2006. Estimating sockeye salmon smolt flux and abundance with side-looking Sonar. North American Journal of Fisheries Management 26:523–534.

Neilson, J. D., and G. H. Geen. 1981. Enumeration of spawning salmon from spawner residence time and aerial counts. Transactions of the American Fisheries Society 110(4):554–556.

O’Neal, J. S. 2007. Video methodology. Pages 443–457 [In] D. H. Johnson, B. M. Shrier, J. S. O’Neil, J. A. Knutzen, X. Augerot, T. A. O’Neil, and T. N. Pearsons, editors. Salmonid field protocols handbook: Techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, MD.

Otis, E. O., and T. J. Blackmon. 2022. Red Lake remote video salmon escapement monitoring operational plan, 2022. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Operational Plan No. ROP.CF.2A.2022.03, Homer.

Otis, E. O., and M. Dickson. 2002. Improved salmon escapement enumeration using remote video and time-lapse recording technology. Exxon Valdez Oil Spill Restoration Project Final Report (Restoration Project 00366), Alaska Department of Fish and Game, Division of Commercial Fisheries, Homer, AK.

Otis, E. O., N. J. Szarzi, L. F. Fair, and J. W. Erickson. 2010. A review of escapement goals for salmon stocks in Lower Cook Inlet, Alaska, 2010. Alaska Department of Fish and Game, Fishery Manuscript No. 10-07, Anchorage.

Otis, E. O. 2012. Fish TV: Using video to remotely monitor salmon escapement. Newsletter of the Alaska Chapter of the American Fisheries Society, *Oncorhynchus* 32(1):1–5.

Otis, E. O., J. W. Erickson, C. Kerkvliet, and T. McKinley. 2016. A review of escapement goals for salmon stocks in Lower Cook Inlet, Alaska, 2016. Alaska Department of Fish and Game, Fishery Manuscript Series No. 16-08, Anchorage.

Otis, E. O. 2020. Lower Cook Inlet remote video salmon escapement monitoring operational plan, 2020–2022. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Operational Plan No. ROP.CF.2A.2020.02, Homer.

Otis, E. O., and G. J. Hollowell. 2022. Lower Cook Inlet aerial and ground survey salmon escapement monitoring operational plan, 2022–2024. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Operational Plan No. ROP.CF.2A.2022.01, Anchorage.

Peirce, J. M., E. O. Otis, M. S. Wipfli, and E. H. Follmann. 2011. Radiotelemetry to estimate stream life of adult chum salmon in McNeil River, Alaska. North American Journal of Fisheries Management 31(2):315–322.

Peirce, J. M., E. O. Otis, M. S. Wipfli, and E. H. Follmann. 2013. Interactions between brown bears and chum salmon at McNeil River, Alaska. Ursus 24(1):42–53.

Perrin, C. J., and J. R. Irvine 1990. A review of survey life estimates as they apply to the area-under-the-curve method for estimating the spawning escapement of Pacific salmon. Canadian Technical Report of Fisheries and Aquatic Sciences No. 1733.

Shardlow, T., R. Hilborn, and D. Lightly. 1987. Components analysis of instream escapement methods for Pacific salmon (*Oncorhynchus* spp.). Canadian Journal of Fisheries and Aquatic Sciences 44:1031–1037.

Shardlow, T. 2004. Using time-lapsed video to estimate survey life for area-under-the-curve methods of escapement estimation. North American Journal of Fisheries Management 24:1413–1420.

REFERENCES CITED (Continued)

Shortis, M. R., and E. O. Otis. 2014. Progress toward automation of salmon escapement counts. Proceedings of the Geospatial Science Research 3 Symposium (GSR_3), Melbourne, Australia. <http://ceur-ws.org/Vol-1307/paper3.pdf>.

Su, Z., M. D. Adkison, and B. W. Van Alen. 2001. A hierarchical Bayesian model for estimating historical salmon escapement and escapement timing. *Canadian Journal of Fisheries and Aquatic Sciences* 58:1648–1662.

Walters, C. J., and D. Ludwig. 1981. Effects of measurement errors on the assessment of stock-recruitment relationships. *Canadian Journal of Fisheries and Aquatic Sciences* 38:704–710.

TABLES AND FIGURES

Table 1.—Daily fish passage at Red Lake autonomous video counting tower (AVCT) by species.

Date	Sockeye salmon		Pink salmon		Dolly Varden		Coho salmon	
	Daily	Cumulative	Daily	Cumulative	Daily	Cumulative	Daily	Cumulative
8 Jun	1	1	0	0	3	3	0	0
9 Jun	20	21	0	0	13	16	0	0
10 Jun	11	32	0	0	-4	12	0	0
11 Jun	19	51	0	0	8	20	0	0
12 Jun	27	78	0	0	8	28	0	0
13 Jun	35	113	0	0	6	34	0	0
14 Jun	20	133	0	0	3	37	0	0
15 Jun	15	148	0	0	0	37	0	0
16 Jun	40	188	0	0	0	37	0	0
17 Jun	33	221	0	0	1	38	0	0
18 Jun	78	299	0	0	0	38	0	0
19 Jun	90	389	0	0	0	38	0	0
20 Jun	92	481	0	0	0	38	0	0
21 Jun	108	589	0	0	0	38	0	0
22 Jun	10	599	0	0	0	38	0	0
23 Jun	10	609	0	0	0	38	0	0
24 Jun	9	618	0	0	0	38	0	0
25 Jun	13	631	0	0	0	38	0	0
26 Jun	7	638	0	0	0	38	0	0
27 Jun	6	644	0	0	0	38	0	0
28 Jun	9	653	0	0	0	38	0	0
29 Jun	2	655	0	0	0	38	0	0
30 Jun	0	655	0	0	0	38	0	0
1 Jul	6	661	0	0	0	38	0	0
2 Jul	3	664	0	0	0	38	0	0
3 Jul	0	664	0	0	0	38	0	0
4 Jul	0	664	0	0	0	38	0	0
5 Jul	6	670	0	0	0	38	0	0
6 Jul	3	673	0	0	0	38	0	0
7 Jul	1	674	0	0	0	38	0	0
8 Jul	0	674	0	0	0	38	0	0
9 Jul	0	674	0	0	0	38	0	0
10 Jul	0	674	0	0	0	38	0	0
11 Jul	0	674	0	0	0	38	0	0
12 Jul	0	674	0	0	0	38	0	0
13 Jul	0	674	0	0	1	39	0	0
14 Jul	0	674	0	0	1	40	0	0
15 Jul	0	674	0	0	3	43	0	0
16 Jul	0	674	0	0	0	43	0	0
17 Jul	0	674	0	0	0	43	0	0
18 Jul	0	674	0	0	0	43	0	0
19 Jul	1	675	0	0	0	43	0	0
20 Jul	0	675	0	0	0	43	0	0
21 Jul	0	675	0	0	0	43	0	0
22 Jul	0	675	0	0	0	43	0	0
23 Jul	0	675	0	0	0	43	0	0

-continued-

Table 1.—Page 2 of 3.

Date	Sockeye salmon		Pink salmon		Dolly Varden		Coho salmon	
	Daily	Cumulative	Daily	Cumulative	Daily	Cumulative	Daily	Cumulative
24 Jul	0	675	0	0	0	43	0	0
25 Jul	0	675	0	0	0	43	0	0
26 Jul	0	675	0	0	0	43	0	0
27 Jul	0	675	0	0	0	43	0	0
28 Jul	0	675	0	0	0	43	0	0
29 Jul	0	675	0	0	0	43	0	0
30 Jul	0	675	0	0	0	43	0	0
31 Jul	0	675	0	0	0	43	0	0
1 Aug	0	675	0	0	0	43	0	0
2 Aug	0	675	0	0	0	43	0	0
3 Aug	0	675	0	0	0	43	0	0
4 Aug	0	675	0	0	0	43	0	0
5 Aug	0	675	0	0	0	43	0	0
6 Aug	0	675	2	2	0	43	0	0
7 Aug	0	675	0	2	0	43	0	0
8 Aug	0	675	0	2	0	43	0	0
9 Aug	0	675	1	3	0	43	0	0
10 Aug	0	675	0	3	0	43	0	0
11 Aug	0	675	1	4	0	43	0	0
12 Aug	0	675	0	4	0	43	0	0
13 Aug	0	675	0	4	0	43	0	0
14 Aug	0	675	0	4	0	43	0	0
15 Aug	0	675	0	4	0	43	0	0
16 Aug	0	675	0	4	0	43	0	0
17 Aug	0	675	0	4	0	43	0	0
18 Aug	0	675	0	4	0	43	0	0
19 Aug	0	675	0	4	0	43	0	0
20 Aug	0	675	0	4	0	43	0	0
21 Aug	0	675	0	4	0	43	0	0
22 Aug	0	675	0	4	0	43	0	0
23 Aug	0	675	0	4	0	43	0	0
24 Aug	0	675	0	4	0	43	0	0
25 Aug	0	675	0	4	0	43	0	0
26 Aug	0	675	0	4	0	43	0	0
27 Aug	0	675	0	4	0	43	0	0
28 Aug	0	675	0	4	0	43	0	0
29 Aug	0	675	0	4	0	43	0	0
30 Aug	0	675	0	4	0	43	0	0
31 Aug	0	675	0	4	0	43	0	0
1 Sep	0	675	0	4	0	43	0	0
2 Sep	1	676	0	4	0	43	0	0
3 Sep	1	677	0	4	0	43	0	0
4 Sep	1	678	0	4	0	43	0	0
5 Sep	1	679	0	4	2	45	0	0
6 Sep	0	679	0	4	2	47	0	0
7 Sep	2	681	0	4	3	50	0	0

-continued-

Table 1.—Page 3 of 3.

Date	Sockeye salmon		Pink salmon		Dolly Varden		Coho salmon	
	Daily	Cumulative	Daily	Cumulative	Daily	Cumulative	Daily	Cumulative
8 Sep	0	681	0	4	0	50	0	0
9 Sep	0	681	0	4	0	50	0	0
10 Sep	0	681	0	4	0	50	0	0
11 Sep	0	681	0	4	0	50	0	0
12 Sep	0	681	0	4	0	50	0	0
13 Sep	0	681	0	4	2	52	0	0
14 Sep	0	681	0	4	0	52	0	0
15 Sep	0	681	1	5	0	52	0	0
16 Sep	0	681	0	5	0	52	0	0
17 Sep	0	681	0	5	0	52	0	0
18 Sep	0	681	0	5	1	53	0	0
19 Sep	0	681	0	5	0	53	0	0
20 Sep	0	681	0	5	0	53	0	0
21 Sep	0	681	0	5	0	53	0	0
22 Sep	0	681	0	5	0	53	0	0
23 Sep	0	681	0	5	0	53	0	0
24 Sep	0	681	0	5	0	53	0	0
25 Sep	0	681	0	5	0	53	0	0
26 Sep	0	681	0	5	0	53	0	0
27 Sep	0	681	0	5	0	53	0	0
28 Sep	0	681	0	5	0	53	0	0
29 Sep	0	681	0	5	0	53	0	0
30 Sep	0	681	0	5	0	53	0	0
1 Oct	0	681	0	5	0	53	2	2
2 Oct	0	681	0	5	0	53	4	6
3 Oct	0	681	0	5	0	53	1	7
4 Oct	0	681	0	5	0	53	3	10
5 Oct	0	681	0	5	0	53	0	10
6 Oct	0	681	0	5	0	53	0	10
7 Oct	0	681	0	5	0	53	4	14
8 Oct	0	681	0	5	0	53	8	22
9 Oct	0	681	0	5	0	53	0	22
10 Oct	0	681	0	5	0	53	15	37
11 Oct	0	681	0	5	0	53	9	46
12 Oct	0	681	0	5	0	53	0	46
13 Oct	0	681	0	5	0	53	2	48

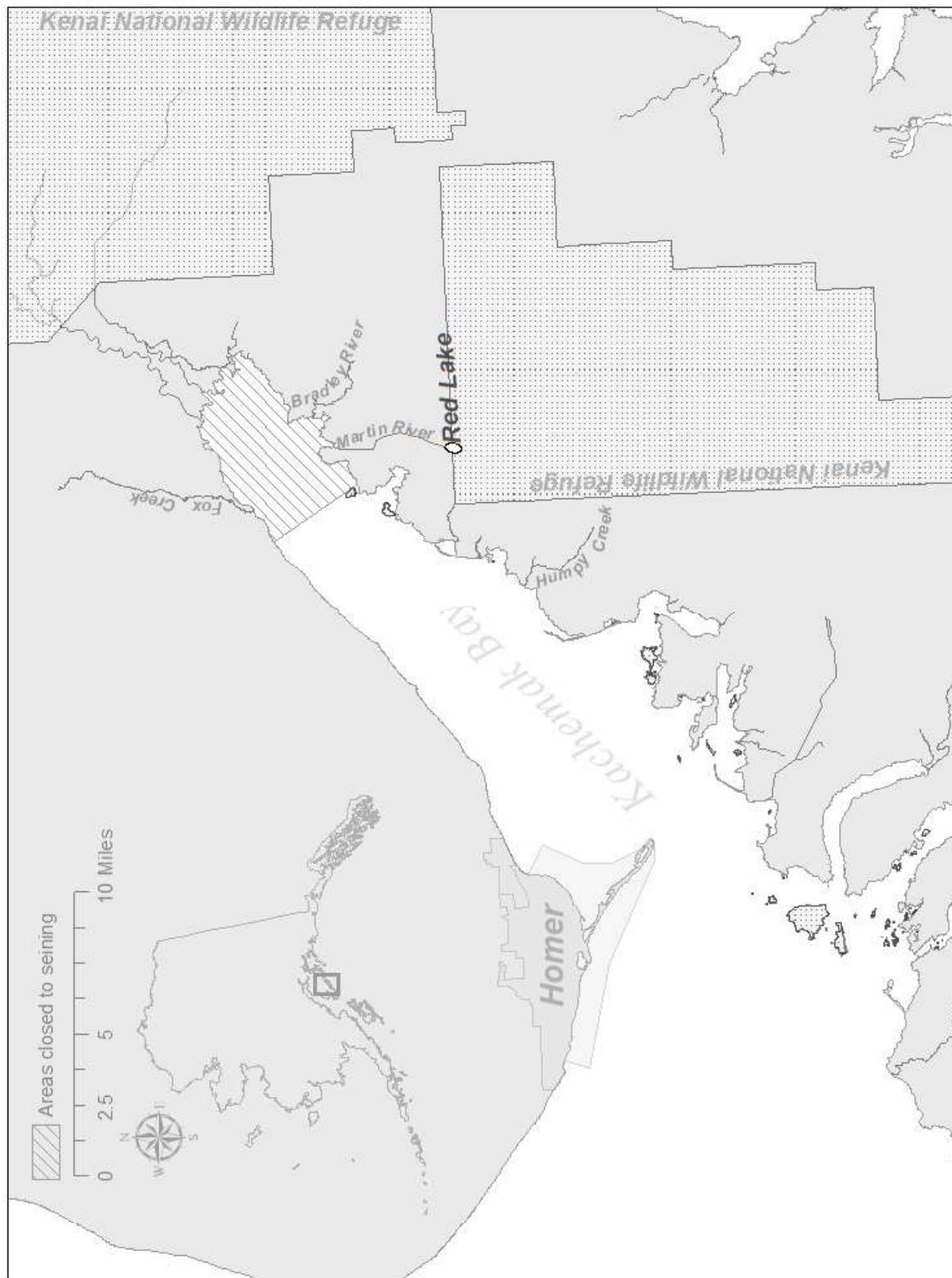


Figure 1.—Map of the Southern District of Lower Cook Inlet showing location of Martin River and Red Lake.

Figure 2.—Photograph illustrating the location of the Red Lake remote video salmon escapement project.

B.

A.

Figure 3.—Photographs of autonomous video counting tower (AVCT) system at Red Lake showing (A) the tower, camera, and aluminum strongbox; and (B) the solar panels and high contrast substrate panel across the stream bottom to enhance the contrast of fish swimming past the camera.

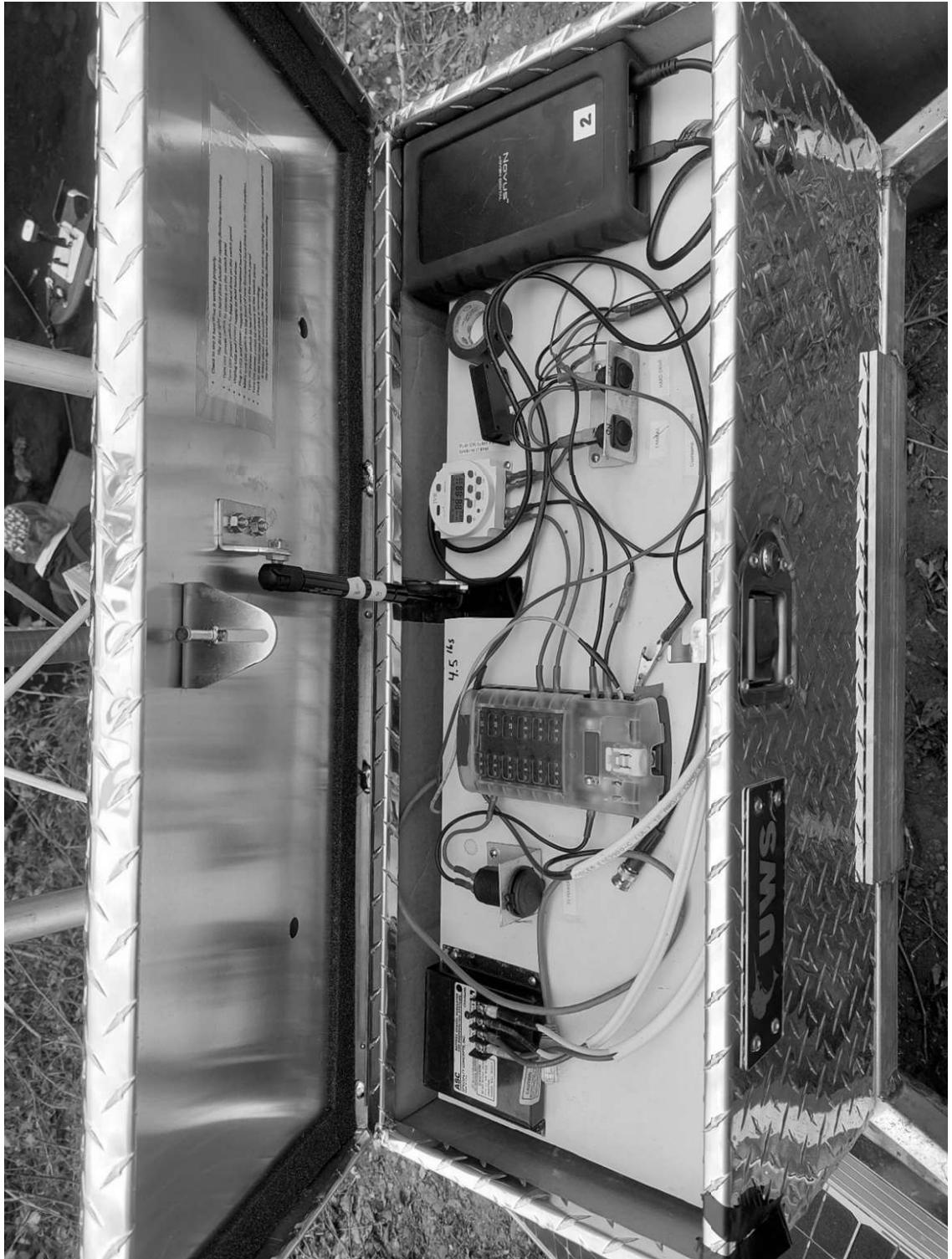


Figure 4.—Picture illustrating the inside of the aluminum strongbox housing various electronic components and two Group 29 12V batteries (underneath the dash panel) that were connected in parallel to make a single 200-amp hour battery bank outputting 12 VDC.

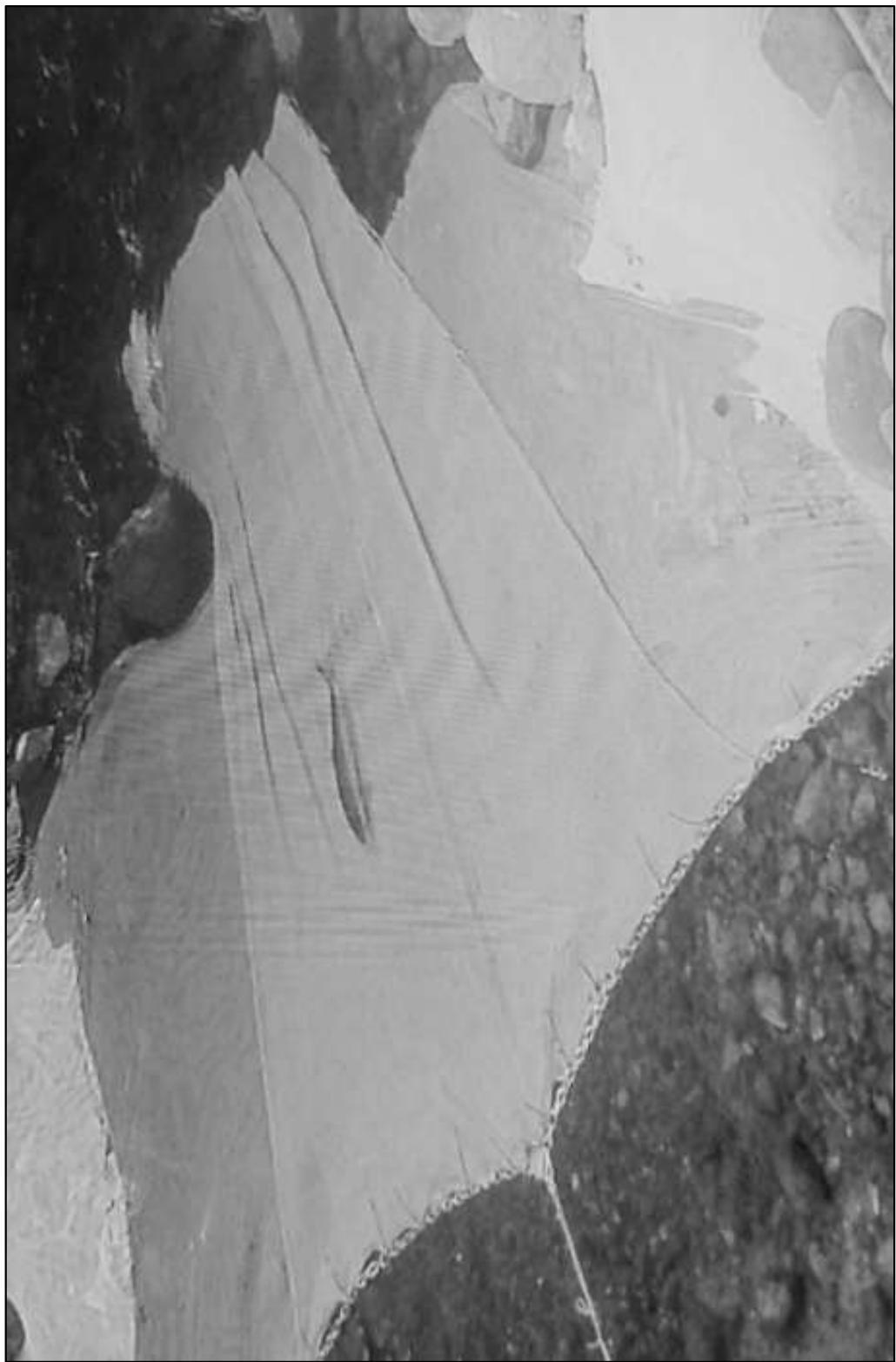


Figure 5.—Screen grab image of adult sockeye salmon migrating upstream, as documented by the autonomous video counting tower (AVCT) system at Red Lake.

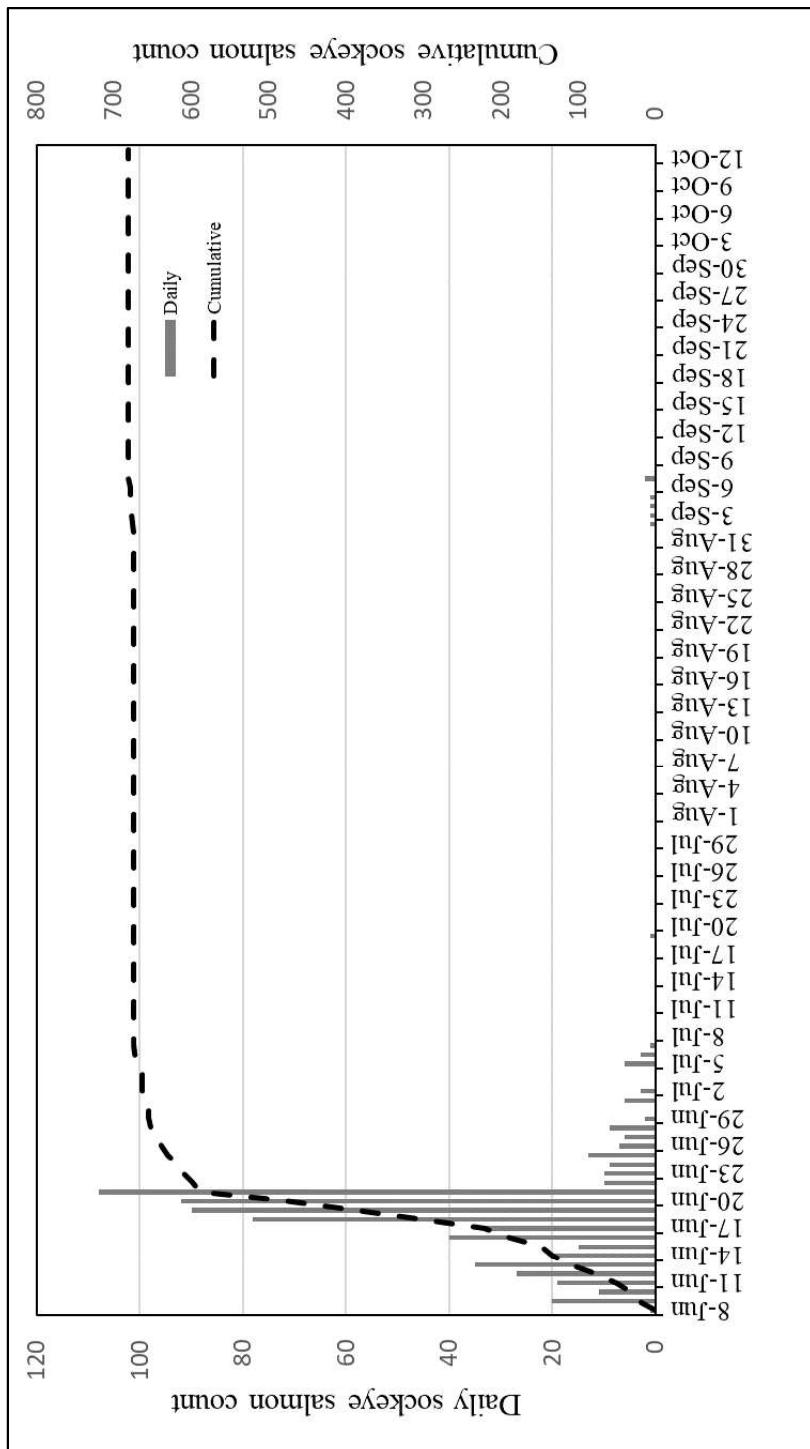


Figure 6.—Chart of daily and cumulative sockeye salmon escapement to Red Lake, 2022.

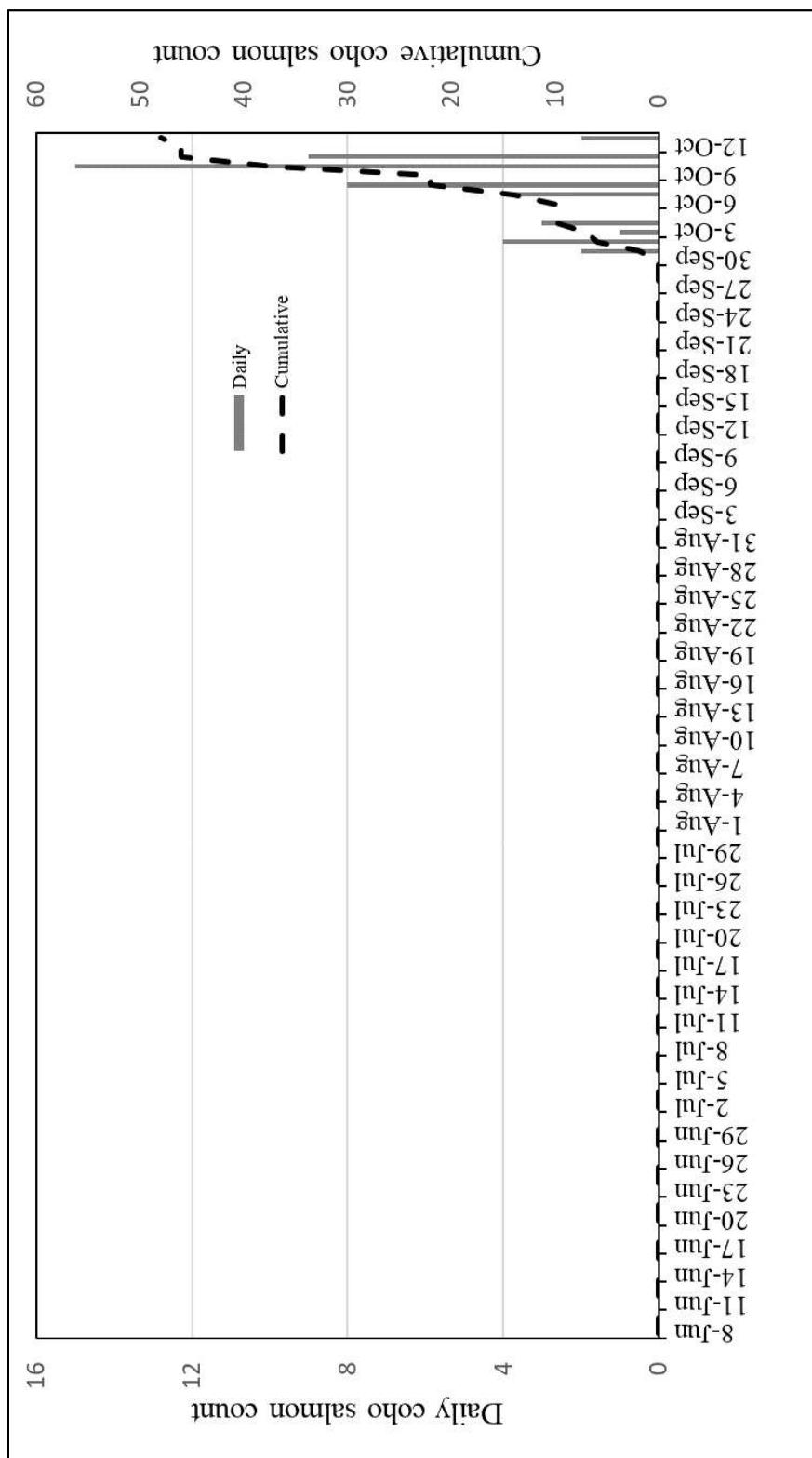


Figure 7.—Chart of daily and cumulative coho salmon escapement to Red Lake.